

PRODUCT BRIEF

e series SV4E-DPRXG

MIPI D-PHY Frame Grabber

Any-Rate, Any-Resolution MIPI CSI-2 Sensor Calibration and Characterization Solution

The SV4E-DPRXG MIPI D-PHY Frame Grabber is a flexible solution for capturing and analyzing MIPI® Alliance CSI-2SM sensor data. It can be attached to any CSI-2 camera output or radar output, and it will automatically extract image data and provide for automated application development, calibration, and regression testing.

The SV4E-DPRXG's unique analog front-end technology for the MIPI Alliance D-PHYSM physical layer means that users can achieve high-confidence sensor validation without worrying about physical attachment issues.

KEY FEATURES:

- **D-PHY Physical Layer:** monolithic receiver with integrated LP/HS signaling and support for data rates up to 3.5 Gbps per lane
- CSI-2 Controller: support for all CSI-2 data types and pixel formats, including RAW16 and RAW20
- Virtual Channels: automatic extraction of all virtual channels supported by the CSI-2 standard
- I2C and I3C Master: dual-mode I2C/I3C master for controlling sensors and providing true hostemulation capability
- **Diagnostics:** built-in frame-rate and CRC monitors

KEY BENEFITS:

- **Future Proof:** high-performance receiver that is upgradable within the same hardware to include packet and protocol analysis
- **Self Contained:** an all-in-one system reduces bench space and helps create very compact regression farms
- **Flexible:** live streaming mode helps with manual sensor setup, and bulk capture mode helps with automation
- Automated: leverages the full power of Python
 and the award-winning Introspect ESP Software

Typical Application: CSI-2 D-PHY Sensor Calibration and Characterization

Key Performance Parameters

PARAMETER	VALUE	NOTES
Number of Lanes	4 Data + 1 Clock	Configurable lane configuration; supports D-PHY v2.5 signaling
Symbol Rates	80 Msps – 3.5 Gbps	Supports a wide array of sensors
Minimum V _{OD}	140 mV	Measured at module connector
Maximum V _{OD}	300 mV	Measured at module connector
Minimum T _{LPX}	50 ns	
Minimum T _{HS-PREPARE} +T _{HS-ZERO}	145 ns + 10 UI	
Total Memory Space	1 GByte	Entire memory space is available for captured image storage
Number of Programmable Power Supplies	6	Independently controlled through Python scripting
Programmable Power Supply Parameters	1 V – 5 V in steps of 1 mV	Each power supply provides 3 A

Dynamically Visualizing Sensor Response and Sensitivity During Live Streaming