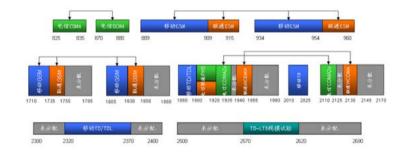
TSP Digital Scanner Specification and Applications

TSP Digital Scanner Specification and Applications

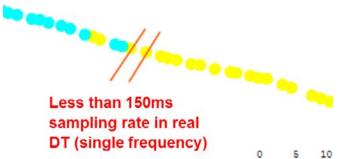

Specifications

TSP-H Scanner							
Frequency Range	9 MHz - 3 GHz						
Channel Bandwidth	1.4 / 3 / 5 / 10 / 15 / 20 MHz						
Antenna Techniques	SISO, SIMO, MIMO (2x2)						
	> 40 channel/sec (LTE @20M band)						
	> 20 channel/sec (WCDMA/HSPA+)						
Measurement Rate	> 30 channel/sec (TD-SCDMA)						
	> 70 channel/sec (CDMA2000/EVDO)						
	> 80 channel/sec (GSM)						
SIB Decoding	90% @ CINR > 0 dB						
Co-Channel Cell Detection	≥ 25 dB						
Dynamic Range (CINR)@ 20 MHz: RS	-23 to +40 dB						
Min. Detection Level: RS RP	≤ -140 dBm (RSRP@ 20 MHz)						
Relative Accuracy (CINR): RS	± 1 dB (Typical)						
Maximum Input Power	≤ 10 dBm						
Second Harmonic and Distortion threshold	≥ -15 dBm						
Spectrum Noise Floor	≤ -130 dBm @ RBW=1.6KHz						

Critical Spec - 1

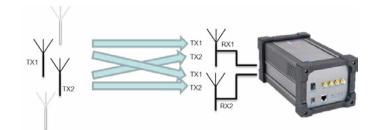
Support Frequency Range: 9MHz – 3GHz continuous wideband detection

- Covering all major wireless standard frequency
- TSP support wideband scanning on all functions (coverage, spectrum and CW)



Critical Spec - 2

- Testing Speed: hundred millisecond detection speed
- Testing speed definition : how fast the scanner can detect single frequency PCI information

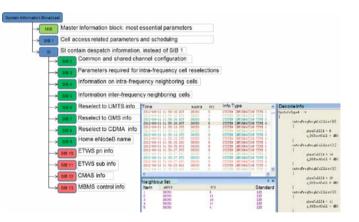

- Slow testing speed directly affected how many sample(s) collected. So you can' t really know the real network coverage

- LTE testing speed is 60 channel/sec. 50% faster than others

Critical Spec 3

- Flexible antenna combination
- MIMO technologies require multi antenna technic to improve data throughput
- Scanner using MIMO matrix H technologies testing to calculate the performance gain of data streaming
- Leading position of antenna applications, TSP support SISO, SIMO and MIMO (2x2).

Critical Spec 4-1


• SIB Success Decoding Rate: >90%

- System Information Block (SIB) contents assist the UE when it is evaluating cell access and also defines the scheduling of other system information

- Only demodulate SIB 1 is require in normal situation. Demodulate/decoding SIB can identify the unique information of the sites. This avoid PCI duplication issue

- TSP scanner can achieve 90% successful decoding rate at CINR >0 situation, 2 to 3 times higher than competitor product

Critical Spec 4-2

Critical Spec 4-2

• Co-channel decoding ability: >25dB

- This is the ability how good is the scanner to detect and demod/decode the co-channels information which is hide under the TopN signal

- The number of co-channel sites detected is solely depend on the scanner decoding ability. It also affect the real scenario of the sites if the decoding power is weak

-TSP scanner has the most advice technologies, it can provide >25dB of decoding power which is the market leader

Critical Spec 6

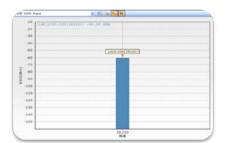
- Minimum Detection Level: \leq -140dBm
- Detection level means the minimum signal level can correctly demod the require information
- The lower the level, the more signal can detect and reflect the real scenario of the site
- TSP scanner min. detection level is \leq -140dBm

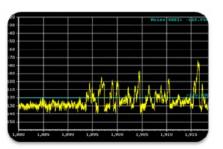
PCI[NID1, NID2]	小区名称	端口	RP (dBm)	RQ (dB)	CINR (dB)	Timing (T
185[61,2]		Rx1Tx1	-118.84	-10.08	2.10	252
184[61,1]		Rx1Tx1	-127.99	-19.23	-6.51	264
183[61,0]		Rx1Tx1	-133.87	-25.12	-12.00	252
370[123,1]		Rx1Tx1	-142.99	-33.62	22.53	936
	184[61,1] 183[61,0]	184[61,1] 183[61,0]	184[61,1] Rx1Tx1 183[61,0] Rx1Tx1	184[61, 1] Rx1Tx1 -127.99 183[61, 0] Rx1Tx1 -133.87	184[61, 1] Rx1Tx1 -127. 99 19. 23 183[61, 0] Rx1Tx1 -133. 87 25. 12	184[61, 1] Rx1Tx1 -127.99 -19.23 -6.51 183[61, 0] Rx1Tx1 -133.87 -25.12 -12.00

Critical Spec 7

• Second harmonic saturation and distortion threshold: Satisfy Spectrum Cleaning

- Apply a testing freq exceeds the front end amplifier threshold , it will generate second harmonic saturation mutation distortion occurs.


- Higher the threshold value in the scanner, the lower the chances the scanner go into second harmonic distortion when impact by a strong signal.


- TSP scanner has \geq -15dBm second harmonic distortion saturation threshold . This is tested in spectrum cleaning and significantly better than the professional spectrum analyser performance.

Hardware

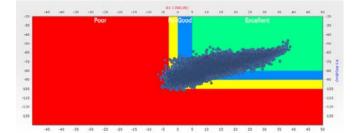
Hardware	
Hardware functions	Applications
Concurrent data collection across multi-technologies and bands	Increase testing efficiency
Increase testing efficiency	Increase accuracy of cell detection and neighbour site relationship
Blind scanning functions	High speed blind scanning on full band and channel detection
Simultaneous spectrum and scanning	In spectrum mode, analyse the known signal which causing interference
GPS pre-searching	Increase GPS searching success rate
Data auto storage and upload to cloud	Real time upload data collected to server, cloud and big data analysis
Self-checking	Self testing on antenna system before DT
Software functions	Applications
Software functions Reporting and Statistic function	Applications Supporting trajectorie, statistic charts, Tables and Google earth data analysis
Reporting and Statistic function	Supporting trajectorie, statistic charts, Tables and Google earth data analysis Coverage, poor coverage report, Overlapping,
Reporting and Statistic function Coverage analysis and testing	Supporting trajectorie, statistic charts, Tables and Google earth data analysis Coverage, poor coverage report, Overlapping, Overshooting, back coverage, Pilot pullution, multi-network analysis Primary Pilot interference, Mod3/6/30 interference, co-channel interferences,
Reporting and Statistic function Coverage analysis and testing Interference analysis and testing	Supporting trajectorie, statistic charts, Tables and Google earth data analysis Coverage, poor coverage report, Overlapping, Overshooting, back coverage, Pilot pullution, multi-network analysis Primary Pilot interference, Mod3/6/30 interference, co-channel interferences, time-slot interference Number of neighbour sites report, mismatch list, lost list, wrong neighbour list,

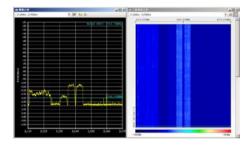
Scanner application


TRANSCOM *

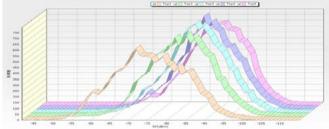
Network Planning: Propagation model optimization

• Propagation model is an empirical mathematical formulation for the characterization of radio wave to predict the path loss along a link and the effective coverage.


• According to Dr. William C.Y.Lee's theory: In order to identify the local environment of slow decline trend signal propagation, at 30 to 50 sampling rate is needed when 2L is 40λ . It is effectively "eliminate fast fading and reserve slow fading" on the signal. This achieve the propagations model calibration purpose.


Network Planning: Propagation model optimization

- During network planning, using scanner to scan the new site area to identify any interference. This call spectrum cleaning
- RSSI tarjectories map
- -Interference index chart
- -Frequency band statistic
- -SPAN=0 testing mode
- -Uplink time slot interference

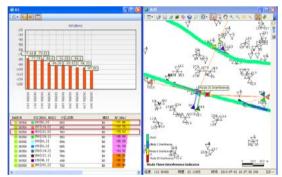

Coverage optimization

- Road coverage optimization
- Poor coverage
- Pilot pollution
- Overshooting
- Multi-antenna coverage
- Antenna Back lobe
- -Indoor leakage

- Network Structure Optimization
- Road overlapping analysis
- Cell overlapping analysis
- Cell overshooting analysis

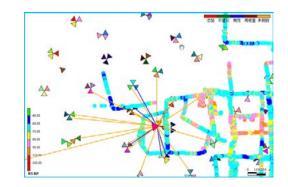
• Co-channel Interference

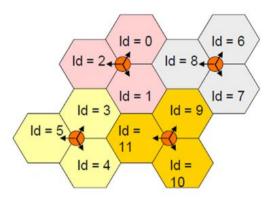
 $PCI = (3 \times NID1) + NID 2$

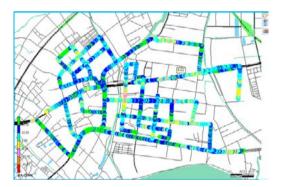

NID1: Second Synchronization Signal (0 - 167)

NID2: Primary Sync Signal (0-2)

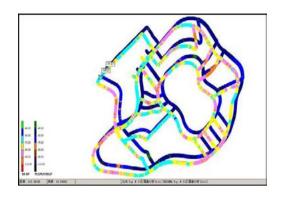
PCI mod 3: PSS interference if PCI mod 3 value the same PCI mod 6: 6 vshift value on DL timeslot, if same PCI mod6 value occur. This cause DL RS interrupt (same Antenna)


PCI mod30: PUSCH consist of DM-RS and SRS information. Is represent by 30 sets of ZC sequence. If PCI mod30 have same value, this will affect the UL DMRS and SRS.


- Co-channel Interference
- Mod3/6/30 analysis
- PCI simulation
- CINR analysis



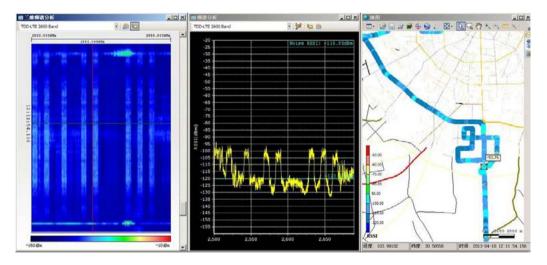
- Neighbours site optimization
- System neighbour site
- Non-system neighbour site
- Neighbour site planning base on CSFB (Circuit Switch FeedBack) info
- Spider web analysis



• Multi-Technology Correlation Analysis

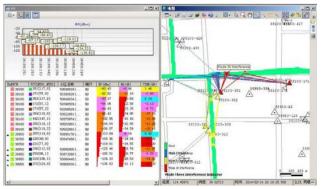
Displaying:

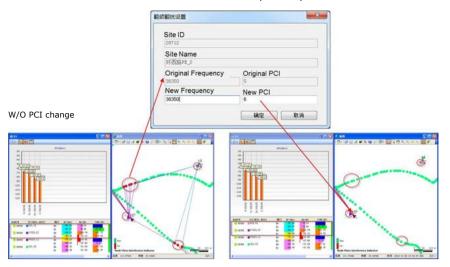
- Multi -traces and charts
- Coverage verification & analysis tables
- Neighboring cell verification & analysis tables
- Co-location multi-tech cell analysis table



Case study 1: Spectrum Cleaning

Interference at 2500-2690MHz


• During testing, a 8MHz bandwidth signal appear regularly spread out the spectrum. After investigation, this is a repeater signal from a broadcast company.


Case study 2: Co-channel interference

Co-channel interference verification map, sites analysis report can be generated by setting RSRP \geq -95dBm, CINR <0, below TopN signal is 6dB. This cell analysis reports is suitable for double screening and investigation.

Additional analysis: PCI can be batch modify to simulate the result and compare the result after modification. This function can help engineer to understand the result will be before actually modify the PCI.

Case Study 3: Co-located site field strength different

•Co-located antenna or Multi-band antennas system is common used today. In normal condition, different technologies should have the similar field strength and coverage. Certain coverage and overlapping must be guarantee. Too large different in technologies are non-rational.

• Using data gathered from multiple network during same DT. A field strength differential report in multi network can be generate to reflect antenna coverage rationality.

After PCI change

				TIR	SCIMA														
34131D	小区名	4.	纬度	住房村*	CP1	LAC	сı	****	李重益 区16	方位角	C+1110	小区名称	EAR FCB	PCI	TAC	cı	辅酶	李敏最区 16	重叠区线场接差(48)
48221		120, 167	30.2650	100	27	550	482	170	76. 4TK	180	7181222		3835	242	16	7181	40	0.00%	18.75
5682		120.132	30.2690	101	76	550	568	2041	46.55%	180	8107141		3835	248	0	8107	1091	0.00%	18.68
50123		120.158	30.2561	100	96	550	501	1618	43.02%	285	8106081		3835	191	7	8106	935	1.39%	18.20
40032		120.142	30.2970	100	91	550	400	1104	64.22%	180	7102032		3835	73	11	7102	397	0.50%	17.56
40444		120, 133	30, 3062	100	68	550	404	3738	79.53%	180	7104442		3835	301	11	7104	769	0.52%	16.78
45968		120.164	30.284T	101	51	550	455	154	55.18%	160	7158962		3835	97	9.	7158	114	57.02%	16.75
8014		120.150	30. 297Z	101	122	550	801	21	95.24%	30	7184011		3835	228	8	7384	1	0.00%	-15.95
48441		120.158	30, 2636	101	58	550	484	12	66, STX	140	7181442		3835	84	18	7181	41	90.24X	-15.49
80291		120.155	30, 2652	100	59	550	802	831	87.24X	270	7101293		3835	38	16	7101	107	0.93%	14.15
50582		120.143	30, 3061	101	51	550	505	2985	73.00%	300	7102583		3835	205	8	7102	912	11.62%	13, 45
58482		120, 152	30.3015	100	16	550	584	262	63.36%	300	7182483		3835	151	8	7182	96	0.00%	12.87
5536		120.132	30.2792	100	83	550	553	347	58.79%	60	7156531		3835	0	12	7158	148	3.38%	12.83
45536		120.132	30.2792	100	82	550	455	1530	56.278	180	7156532		3835	2	12	7156	686	2.48%	12.45
9673		120.156	30.2502	100	67	552	967	764	89.53%	30	8144551		3835	129	17	8144	83	3.61%	12.18
7569		120.156	30.2514	100	47	552	756	608	71.66%	30	7179561		3035	12	17	7179	234	2.145	12.14
40057		120, 132	30.2876	101	75	550	400	73	91.70%	130	0105292		3835	354	11	0105	9	33.33%	-12.02
4127		120.164	30.2757	100	44	\$50	412	147	29.25%	60	8144981		3835	121	9	8144	107	2.80%	11.78
48482		120.152	30, 3015	101	18	550	404	338	17.228	170	7182482		3835	152	8	7182	81	4.94%	11.45
5997		120.137	30.2818	100	0	550	599	807	99.30%	60	8144581		3835	58	29	8144	5	0.00%	11.16
101		120.166	30.2503	100	124	550	101	1448	51.31%	300	8144561		3835	354	17	8144	1280	44.92%	-11.15
54127		120.164	30.2757	101	109	550	541	178	93.26%	320	8144983		3835	122	9	8144	25	52.00%	10.68
50061		120.162	30.2891	100	62	550	500	314	80.25%	300	7101063		3835	110	9	7101	66	6.06%	10.44
50921		120, 178	30.2478	100	55	550	509	621	32, 37%	340	7101923		3835	128	17	7101	904	53.54X	-10.34
47569		120, 156	30.2514	101	67	552	475	701	71.70%	200	7179562		3835	13	17	7179	257	14.01%	10.00
40661			30.2744	101	35	550	405	100	85.17%	190	8144722		3835	25	12	8144	112	76.79%	-9.67
50452					112			701	81.60%	300	8144063		3835	338	16	8144	132	2.27%	9.52
			30 0700						12000000	200	7100033		2025		-	-	INC	10.008	0.40

About Transcom

Shanghai Transcom Instrument Co., Ltd. (NEEQ: 831961), established in 2005, independently research and develop high-end radio frequency communication testing instruments and is a professional provider of overall testing solutions. Starting from 2009, Transcom, titled as National High-Tech Enterprise and the fostered enterprise by Shanghai Little Giant Project, has undertaken the tasks of development for National "New-Generation Broadband Wireless Mobile Communication Network" and the construction of Shanghai Engineering Research Center for Wireless Communication Testing Instruments.

In 2015, Transcom officially announced its new five-year development strategy "1+3". In detail, Transcom will continue to enhance its potential to be the national team for domestic wireless communication instruments, and develop security software for mobile communication network (network communication/data mining), wireless signal (spectrum monitoring/situation analysis) and Beidou navigation (signal monitoring for satellite navigation/mobile anti-jam verification platform). The strategy has now been implemented systematically with progressive achievements in Shanghai, Guangdong and other cities.

Keep innovating for excellence!

Headquarter

6F, Buliding 29, No. 69 Guiqing Road, Xuhui District, SHANGHAI, PRC. 200233 Tel:+86 21 6432 6888 Fax:+86 21 6432 6777 Hotline:400 6778077 Mail:info@transcom.net.cn www.transcom.net.cn Beijing office Room 512,513,geology building, No.13 Peace Street, Chaovang District, BEIJING, PRC, 100013 Tel:010-84263611 Fax:010-82051758 Guangzhou office Room 1004, Houhe building, No.77 Zhongshan Road, Tianhe District, GUANGZHOU, PRC. 510630 Tel:020-38846191/38846192/ 38846190 Fax:020-38846191-603 Shenzhen office Room 726, Lankun Building, No.213 Minkang Road, Nanshan District, SHENZHEN, PRC. 518131 Tel:0755-26509997 Fax:0755-26509995 Chendu office Room 403, Unit 1, Keller international Building 3, No.14 Ninehing Road, Hi Tech District, CHENGDU, PRC. 610042 Tel:028-83227390 Fax:028-85120797 Xi'an office Room 1101, Jiatian building 2, Kechuang Road, Yanta District, XI'AN, PRC.710065 Tel:029-88240745 Fax:029-88227690

Keep innovating for excellence!

company profile

wechat