

SV4E MIPI C-PHY/D-PHY DSI-2 Panel Tester

Data Sheet

Table of Contents

List of Figures

Figure 1	Block diagram of C-PHY generator inside SV4E	4
Figure 2	Illustration of the main software interface for generating DSI-2 traffic.	5
Figure 3	Simplified wake-up and power-down sequence controls	5
Figure 4	Individual DSI-2 panel commands useful for debug or failure analysis.	5
Figure 5	Photograph of SV4E tester showing Samtec QTH connector	6
Figure 6	Illustration of Introspect SV4E, left, connecting to display adapter board, right, via Samtec	
connecto	rs	6

List of Tables

Table 1	General Specifications	7
Table 2	Transmitter Characteristics	7
Table 3	Clocking Characteristics	8
Table 4	Pattern Handling Characteristics	8
Table 5	DUT Control Capabilities	9
Table 6	Software Environment and Mechanical Dimensions	9

Introduction

Overview

The SV4E MIPI C-PHY/D-PHY DSI-2 Panel Tester is a highly versatile pattern generator suitable for turning on display panels and performing functional display test. It supports both C-PHY and D-PHY signalling interfaces, contains a large on-board memory, and provides an extremely flexible control interface.

Ideal for display panel testing and color calibration in a high-volume environment, the SV4E comes with an easy to use Control Panel and integrated Windows environment.

Key Benefits

- Complete DSI-2 support in a compact form factor
- Combo D-PHY and C-PHY signaling technology helps protect investment over multiple product generations
- Support for video-mode, command mode, tearing effect, and many advanced DSI-2 protocol requirements
- Support for compression algorithms based on the Vesa DSC standard

Applications

- Display Driver IC demonstration/evaluation board development
- Production testing of display panels
- Calibration and failure analysis
- Firmware and software integration and debug

Features

Block Diagram

The SV4E is a pattern-generator compliant with the most recent MIPI C-PHY specifications, including creation of low-power (LP) and high-speed (HS) protocol events. Figure 1 illustrates the block diagram and the architecture that allows unique control over LP and HS events, ensuring compliant DSI-2 packets and video frame transmission.

Built into the HS generators within the SV4E are the dedicated hardware C-PHY mapper and encoder. This allows for tremendous ease of use and true host-controller emulation, all from within a single, Windows-based software environment.

Figure 1 Block diagram of C-PHY generator inside SV4E

Simple User Interface

The SV4E is controlled using a PC from a Windows operating system. The software is amenable for production environments, minimizing operator involvement and maximizing throughput. Figure 2 shows the GUI where a single entry page is used to specify DSI parameters such as pixel format and transmission mode (video versus command). The figure also shows an example of a high-definition video sequence being produced by the SV4E, mimicking high frame rate video transmissions in either command-mode or video-mode.

Figure 2 Illustration of the main software interface for generating DSI-2 traffic.

🔯 DISPLAY Control Sequences	s ×
TE mode WakeUp Sequence .	TE mode PowerOff Sequence .
Video mode WakeUp Seq	Video mode PowerOff Sequence .

Figure 3 Simplified wake-up and power-down sequence controls.

Figure 4 Individual DSI-2 panel commands useful for debug or failure analysis.

Apart from the simple automated setup, the software environment offers control panels for individually programming wakeup sequences or power down sequences as well as debugging single display commands, illustrated in Figure 3 and Figure 4.

Connection Diagrams

The SV4E offers a single low-cost connection scheme to display adapter modules, illustrated in Figure 5. The SV4E contains a Samtec QTH connector that carries both the C-PHY signals as well as low-speed control pins an auxiliary 5V DC output.

The SV4E mates to the display adapter module in a mezzanine configuration as illustrated in Figure 6. Note that the adapter board needs to extend away from the edge of the SV4E as shown in the drawing. Alternatively, Samtec-provided coaxial cables are available for further flexibility of attachment to display modules.

Figure 5 Photograph of SV4E tester showing Samtec QTH connector.

Figure 6 Illustration of Introspect SV4E, left, connecting to display adapter board, right, via Samtec connectors.

Specifications

Table 1 General Specifications

Parameter	Value	Units	Description and Conditions
Application / Protocol Support			
Physical layer interface	C-PHY		
MIPI protocol	DSI-2		Flexible pattern architecture allows for the generation of encoded PHY data, unencoded PHY data, or entire DSI-2 protocol data Tester supports automatic acknowledge and error report readout from device receivers through the C- PHY BTA capability
Compression protocol	Vesa DSC		
	v 1.11		
Ports			
Number of Transmitter Trios	2		Order code SV4E-2
	4		Order code SV4E-4
Number of GPIO Pins	16		2.5 V LVCMOS I/O pins capable of executing pattern vectors
Number of Flag Output Pins	2		Additional configurable flag pins
Auxiliary Output Supply Voltage	5	V	Single supply voltage for powering peripheral devices such as a Display Adapter Board
Data Rates and Frequencies			
Minimum Data Rate	80	Msps	
Maximum Data Rate	1.5	Gsps	Contact factory for higher data rates
Maximum GPIO Clock Frequency	10	MHz	

Table 2 Transmitter Characteristics

Parameter	Value	Units	Description and Conditions
HS Output Coupling			
Output Single-Ended Impedance	50	Ω	
Output Impedance Tolerance	+/-5	Ω	
HS Voltage Performance			
Minimum VOD	0	mV	
Maximum VOD	250	mV	
VOD Programming Resolution	10	mV	
Level Setting	Per-Wire		
LP Voltage Performance			
Minimum LP High Level	700	mV	
Maximum LP Low Level	100	mV	
Global Timing Parameters			Timing parameters are programmable in the GUI
t3-Prepare	100	ns	
ths-Exit	300	ns	
tLPX	100	ns	
tA-Go	400	ns	
t3-Prebegin	196	UI	
t3-ProgSeq	14	UI	
t3-Preend	7	UI	
t3-Post	112	UI	

Table 3 Clocking Characteristics

Parameter	Value	Units	Description and Conditions
Internal Time Base			
Number of Internal Frequency	1		
References			
Frequency Resolution of	1	Kbps	
Programmed Data Rate			

Table 4 Pattern Handling Characteristics

Parameter	Value	Units	Description and Conditions
Preset Patterns			
Packet Loop	PRBS		Repetitive PHY packets consisting of LP111 segments,
			a valid HS-entry sequence, and a payload consisting of
			PRBS data
	Symbol Sequence		Same as above, but with user-specified symbol
			sequences within the payload of the PHY packet
	Integer Data		Same as above, but with the payload specified in
	L.C. H. L.		terms of 16 bit integers
LP Only	Infinite Loop		Repetitive transmission of user-specified LP states
US Only	Une-Shot		Single transmission of an LP sequence
HS Offiy	PKBS		A single HS-entry sequence is perjormed, joilowed by
	Symbol Sequence		Same as above, but the looping data is based on user.
	Symbol Sequence		specified symbol sequences
	Integer Data		Same as above, but the looning data is entered in
	integer Data		terms of 16 hit integers
DSI-2 Color Bar	Command Mode		terms of 10 bit integers
	command mode		
	Command Mode		
	with Tearing Effect		
	Purct Modo		
	Buist Would		
	Non-Burst Mode		
	with Sync Events		
	,		
	Non-Burst mode with		
	Sync Pulses		
Arbitrary DSI-2 Patterns			
Lane Distribution	TRUE		Allows duplication of generated patterns across the
	FALSE		two trios or more for debug
Augilable Dattage Adverse	1	Chite	Manager is used to be used a second lad C. DUN sectors
Available Pattern Memory	1	GDITS	Memory is used to nouse complied C-PHY patterns
jor munsmitters			consisting of integer data, LP data, and pattern
Custom Dattorn Convenser			sequencer programs
Custom Pattern Sequencer			Anows generation of arbitrary generic or DCS register
Sequence Control	Loon infinite		communus
Sequence control	Loop on count		Count is a user defined number that is specified later
	Loop on count		in this section
	Play to end		
Number of Sequencer Slots	16		Each pattern generator can string up to 16 different
per Pattern Generator			segments together, each with its own repeat count.
			See illustration under Notes
Number of Entry Slots	1		See illustration under Notes
Number of Exit Slots	1		See illustration under Notes
Maximum Loop Count per	2 ¹⁶ - 1		
Sequencer Slot			

Specifications

Table 5 DUT Control Capabilities

Parameter	Value	Units	Description and Conditions
GPIO Port Data Drive Formats	Н		Using a text vector file, each pin can be programed to drive High, Low, or to go into high-impedance state
	L X		
Data Compare Formats	Н		Using a text vector file, each pin can compare against expected data
	L		
	x		
Pattern Vector Length	TBD		

Table 6 Software Environment and Mechanical Dimensions

Parameter	Value	Units	Description and Conditions
OS Support			
Windows 7	Yes		
Windows 8	Yes		
Windows 10	Yes		
License Protection			
Node-Locked	Yes		
Communications Interface			
USB	Yes		
Dimensions			
Length	6.5	inch	
Width	3.5	inch	
Height	1.5	inch	
Display Connector			
Introspect SV4E			Samtec QTH-040-XX-L-D-DP
Display Adapter (not included)			Samtec QSH-040-01-L-D-DP-A

Revision Number	History	Date
1.0	Document creation	December 11, 2016
1.1	Minor text modifications; removed preliminary markings; updated specifications	March 29, 2017

The information in this document is subject to change without notice and should not be construed as a commitment by Introspect Technology. While reasonable precautions have been taken, Introspect Technology assumes no responsibility for any errors that may appear in this document.

© Introspect Technology, 2017 Published on March 29, 2017 EN-D010E-E-17088